On Existence and Regularity of Solutions to a Class of Generalized Stationary Stokes Problem

نویسنده

  • N. D. Huy
چکیده

We investigate existence of weak solutions and their smoothness properties for a type of generalized Stokes problem. The generalization we consider here consists in two points: A Laplacean is replaced by a general second order linear elliptic operator in divergence form and “pressure” gradient ∇p is replaced by a linear operator of the first order. Introduction Results contained in this contribution can be found with proofs in the preprint Huy and Stará [11]. Let Ω ⊂ R, (d ≥ 2), be a bounded domain with boundary ∂Ω. We study a generalization of linear Stokes problem: For given f = (f1, · · · , fd) : Ω −→ R d and g : Ω −→ R, A =

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence, Uniqueness and Regularity of Stationary Solutions to Inhomogeneous Navier-stokes Equations in R

For a bounded domain Ω ⊂ Rn , n > 3, we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system −∆u + u · ∇u +∇p = f , div u = k, u|∂Ω = g with u ∈ L q , q > n, and very general data classes for f , k, g such that u may have no differentiability property. For smooth data we get a large class of unique and regular s...

متن کامل

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

On the stationary Oseen equations in R

The stationary Oseen equations are studied in R3 in its general form, that is, with a non-constant divergenceless function on the convective term. We prove existence, uniqueness and regularity results in weighted Sobolev spaces. From this new approach, we also state existence, uniqueness and regularity results for the generalized Oseen model which describes the rotating flows. The proofs are ba...

متن کامل

Smooth Attractors for the Brinkman-forchheimer Equations with Fast Growing Nonlinearities

We prove the existence of regular dissipative solutions and global attractors for the 3D Brinkmann-Forchheimer equations with the nonlinearity of an arbitrary polynomial growth rate. In order to obtain this result, we prove the maximal regularity estimate for the corresponding semi-linear stationary Stokes problem using some modification of the nonlinear localization technique. The applications...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005